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Abstract

Fractal interpolation techniques provide good deterministic representations of complex phenomena.
This paper approaches the Hermite interpolation using fractal procedures. This problem prescribes
at each support abscissa not only the value of a function but also itp filstivatives. It is shown
here that the proposed fractal interpolation function and itsdfidgtrivatives are good approximations
of the corresponding derivatives of the original function. According to the theorems, the described
method allows to interpolate, with arbitrary accuracy, a smooth function with derivatives prescribed
on a set of points. The functions solving this problem generalize the Hermite osculatory polynomials.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Fractal interpolation techniques provide good deterministic representations of complex
phenomena such as economic time series, weather data, etc. The main difference with classic
procedures consists in the definition of a functional relation assuming a self-similarity on
small scale41,2]. The theorem of Barnsley and Harringtf8) Theorem 2]proves the
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existence of differentiable fractal interpolation functions. This kind of approximants can
generalize the piecewise polynomial interpolation as for instance, the method of spline
functions[7]. This paper approaches the Hermite interpolation using fractal procedures.
This problem prescribes at each support abscissa not only the value of a function but also
its first p derivatives. The original and the reconstructed functions thus have a contact of
orderp at the nodes. The fractal interpolation functions solving this problem contain the
Hermite osculatory polynomials as a particular case.

In the second part of the paper, the uniform distance between a smooth original function
and the proposed fractal interpolation function is studied. The results obtained prove that the
first derivatives are good approximations of the corresponding derivatives of the function.
As a consequence, if a sequence of interval partitippsuch that| 4,,|| — 0is considered,
the error of interpolation approaches zero.

2. Generalization of the Hermite functions by fractal interpolation
2.1. Hermite functions

Given a partitiond: g < 11 < --- < ty of an interval[rg, txy], I, = [ty—1, t,] fOr
1<n< N, the Hermite function spad8] HL"’+l (p € N) is defined by
H" = (g1 10, t5] = R; ¢ € CPlio.tn]. 0li, € Popral,

whereP ;11 is the space consisting of all polynomials of degree at mpst-2.

In order to approximate a given real functience C |10, ty] by a functione € Hj’“
the component polynomials, = ¢|;, are chosen so that, € P 2,1 and for 0<k < p:

P,(lk) (th—1) = x(k) (th—1), P,(lk) (tn) = x(k) (tn).
The existence of a unique solution for this problem is guarari&jed

2.2. Fractal interpolation functions

Letrg < 11 < --- < ty be real numbers, antl= [rg, 5] C R the closed interval that
contains them. Let a set of data poifts,, x,) € I x R: n =0,1,2, ..., N} be given. Set
I, = [ty—1,ty]and letL,: I — I,, n € {1,2,..., N} be contractive homeomorphisms
such that

Ln(tO) =In-1, Ln(tN) =1In, (1)
[Lp(c1) — Lu(c2)|<IJc1 —c2| Vei,c2 €1 2

for some X/ < 1.
let—1<o, <1;n=1,2,....N,F =1 x|[c,d] forsome—oco < ¢ <d < +o0 and
N continuous mappingd;, : F — R be given satisfying

F,(to, x0) = xp—1, Fuln,xy)=x,, n=1,2..,N, (3)
[Fu(t,x) — Fu(t, y)|[<onlx —yl, tel, x,yelR (4)
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Now define functionsv, (¢, x) = (L, (¢), F,(t,x)), Yn =1,2, ..., N.

Theorem 1(Barnsley[1,2]). The iterated function systefi+S)[5] {F, w,:n=1,2, ...,
N} defined above admits a unique attractor G.is the graph of a continuous function
f: I — Rwhich obeysf (t,) = x, forn =0,1,2, ..., N.

The previous function is called a fractal interpolation function (FIF) corresponding to
{(L,(), F,,(t,x))}ﬁ:’:l. f: I — R,isthe unique function satisfying the functional equation

fLy(@) =F,¢t, f@), n=1,2,..,N, tel
or
fO) = Fo(LY@), foL X)), n=1,2.,N, tel,=I[tn1.t]. (5)

Let F be the set of continuous functions: [z, t5y] — [c, d] such thatf(zg) = xo;
f(tn) = xy. Define a metric o by

If — 8llo = max{lf () —g)|: 1€l in]} Vf, geF

Then(F, d) is a complete metric space.
Define a mapping : 7 — F by

(Tf)t) = Fu(L;Y0), foL; X)) Vielty1.t,], n=1,2, .. N.

Using (1)—(4), it can be proved thél f)(¢) is continuous on the intervdd,_1, ,] for
n=1,2, ..., N and at each of the points, o, ..., ty_1. T is @ contraction mapping on the
metric spacéF , d)

ITf = Tglloo <ltlooll f = &lloos (6)

where|als = max{|o,|; n = 1,2, ..., N}. Sincelal. < 1, T possesses a unique fixed
point onF, that is to say, there ig € F such that(Tf)(r) = f(¢t) Vt € [to, ty]. This
function is the FIF corresponding to,.

The most widely studied fractal interpolation functions so far are defined by the IFS

{Ln(t)zant+bn» (7)

Fu(t, x) = oapx + qn (1),

whereg, (r) is a polynomia[2,6]. «, is called a vertical scaling factor of the transformation
Wy.

2.3. Hermite fractal interpolation functions
The following theorem assures the existence of differentiable FIF.

Theorem 2(Barnsley and Harringtofi3]). Letsy < 11 < t2 < --- < ty and L,(¢),
n=1,2, .., N, the affine functiorL, (r) = a,t + b, satisfying the expressior{&)—(2).
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Leta, = L/, (t) = ﬁ and F, (1, x) = a,x + (1), n = 1,2, ..., N verifying (3)—(4).
Suppose for some integee=>0, |«,| < af andg, € CP[to, ty];n =1,2, ..., N. Let

X + ngk) ()

Fu(t, x) = T , k=1,2,..,p, (8)
an
(k) (k)
qy  (to) qy’ ()
X0k = ,} XNk = ,fv— k=1,2,..,p.
ag — o1 ay — oUN
If
Fu_1k(tn, xn k) = Fux(t0, x0.%) 9

withn = 2,3, ..., Nandk = 1,2, ..., p,then{(L, (1), F,(t, x))},’l\’:l determines &IF f <
CPlto, ty] and f® is the FIF determined by(L, (1), Fu (t, x))}\_y, fork = 1,2, ..., p.

The above result leads us to expect that the Hermite fractal interpolation problem can
be solved uniquely. The following theorem guarantees the existence of a Flp with
derivative values prescribed at the abscig¢asx,x); n =0,1,...,N; k=0,1, ..., p).

Theorem 3. Let N>1, pe N,rg <11 < --- <ty and{x,;;n =0,1,...,N; k =
0,1, ..., p) be given. Let, oy, ..., ay real numbers such thaa,| < af ¥Yn=1,2,..., N,
with a, = % There exists precisely one function of fractal interpolatipre C?

defined by an IFS given by

{ Ly(t) = apt + by,

Fn(tv-x):anx‘i‘qn(t), (10)

whereg, (1) Vn = 1,2, ..., N are polynomials of degree at m@&i+ 1, such thatf ® (1,,) =
xpp forn=0,1,...,N;k=0,1, ..., p.

Proof. Consider

h —Ih—1 _ INth—1 — 10l

an = ———, bn (11)
IN — 10 IN — 10
and define, for &k < p
(k)
Fot,x) = 2t an @O (12)

k
ay

with deg(g,) = 2p + 1.
The polynomial, (z) is computed as solution of the system of equati@is k < p)

k
oot (1)
ak

Fur(to, xor) = = Xp_14k
(13)

n
k
oxne gy (in)

ay

Fuc(tn, xni) = = Xuk.
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The coefficients of, (1) are the 2 + 2 unknowns of the above equations. The expressions
(13) can also be written as

_ k
(Gn o LyH®(t,-1) = % g (t0) = xp-1.6 — 3%

ak
i n k ‘ 0 (14)
(q" © Ln l)(k)(tn) = aik q,(, )(ZN) = Xpk — 9‘na/‘kak

for0<k < p.

The functiong, o L;1(¢) is a polynomial of degree at mosp2- 1 whose derivatives up
to orderp atz,_1 andz, are equal to the right-hand side of the expressions (14). Therefore
qn oL;1 is a Hermite interpolating polynomial m,—1, #,] whose existence and uniqueness
is guarantee{B]. From here it is deduced thaf (z) exists and is unique. The IFS given by
(10) defines precisely one fractal interpolation function.

The functionsF, (¢, x) defined by (12) verify the hypotheses of the Barnsley and
Harrington theorem. By constructiofe = 2, 3, ..., N (13)

Fur(to, xok) = Xp—1,k = Fr—1,k(tN, XNK)-

The theorem quoted assures the existencg afC ? such thatf ¥ is the FIF defined by
the IFS{(Ly, Fu)})_;.
Consequentlyf ® is the fixed point oy : Fy — Fy

(Tkg) (1) = Fur(L, (1), g o L, (1) V1 € [ty—1, 1],
whereF; = {g: [to, ty] — [c, d] cont; g(to) = xor, g(tn) = xni}. f® € Fy and
fO0) = xor.  fOn) = xwi. (15)
From (13) and (15)

F® () = Fa (L 2 t0), fOL0))) = FucGn, & (tn))
=Fu(n, xyy) =xp Yn=0,1, ... N Vk=0,1,.., p. U

The above functiot generalizes the Hermite functions asiif=0 vn = 1,2,...,. N
thenf e CP and f(t) = Fuo(L,;X(t), f o LX) = gu o L) if t € [ty_1,1,]. fis @
polynomial of degree at mostp2+ 1 in I, = [#,—1, t,] and consequentlf/is a Hermite
function, f e Hj*l[to, vl

Due to this result, a fractal interpolation function defined by the IFS (10) of the Theorem 3
will be called a Hermite fractal interpolation function (HFIF).

3. Bounds of the interpolation error

In the first place, the error committed by the substitution of a functien by the HFIF
fe (2) with scale vectorx will be bounded.
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Theorem 4 (Ciarlet et al.[4]). Letx(¢) € C"[0, 1]withr>2p + 2,let A be any partition
of [0,1],4: 10 <11 < --- < ty, and leto(¢) be the unique interpolation af(z) in Hj’+l,
i.e., xD,) = O, forall 0<n <N, 0<I< p. Thenforall k with0<k<p +1

Ix® — @® oo <Cp 15372 || oo 1 4)12P 27K (16)
with
1

Cr =
KT 2z (2p + 2 — 2)!

17)

and|| 4]l = o max_ Altn+1 —tl}.

\\

The Eq. (13) can be written as

k

qr(l )(to) = akxn_1.k — omxor, 18

®) ¢ (18)
qn (tn) = Ay Xnk — An XNk

for 0<k < p. The polynomials;, can be considered as functionegfandt, g, («,, ).

Proposition 1. The functionsy, (o, t) are indefinitely differentiable and the following

inequalities are verifiedft € [to, ty]1Vn =1,2,..., N.
0
a%i (o, 1)| < Do, (19)
ak+1
Do akq"(a"’t) <Dy, k=1,2,... (20)
with

V= max {ll P.1loo} @nd with P,, being the inverse of the coefficients matrix of the system
(18) W|th unknoqun, d= mkax {Ixokl, xnkl}, T =ty — to and

<k<

2p+1)2p... 2p+1l—k+1
p = Zptber T(k’” D i 2p+2- k). 22)

Proof. Define

2 2p+1
—10 t—1p r—1o
+ qon < ) +- 4+ q2p+1.n <IN — ) (23)

t
1) = qon +
qn (1) = qon + q1n N —To N —To tO

and letdM,, be the coefficients matrix of the system (18) with unknawn(0< j <2p +1).

2p+1

Ma(gjn) 3Pt = (cju(an) T8t
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with ¢, (0,) = a,{x,,_l,j — apxg; for 0<j<p and cju(n,) = a,{_p_lxn,j_p_l -
onXN, j—p—1 for p+ 1< j<2p + 1. As the system admits a unique solution, the matrix
M, is nonsingular.

If P, = M, one has

(@)t = Palejn(an)) 75" (24)

The derivatives of j, with respect tax, are:

! Z = —x0j, 0<j<p, 25
Tt =N, jop-1, PHISj<2p+ 1
_ 2p4l
Defined = oMax (lxocl. lxil} andv, = [|Pillc = 0B EO P, v =
1£ZXN{Vn}-

From (24) and (25), it results

0
an((xn» t) gvn dévd
Oy,

Vj=0,1,...,2p+ 1and sovt € [tg, ty] according to (23)

2p+1

5>

j=0

<(@2p+2)vd.

0
th(o‘mt) %(fhn(ana 1)

If the expression (23) is differentiatédimes, 1<k <2p + 1

2p+1
Oy N =D =2 —k+1) -
4y (1) ; v 1o Grn (t — o)

therefore, ift € [to, ty]

ak-i—l

W‘]n (otp, 1)

@Cp+D2p...2p+1—k+1)
Tk

< vd 2p+1—k+1)

wWithT =ty — 9. O

Consider the IFS (10) defined in the Theorem 3 and the mapping
T:JxF —>F,

(a’ f) - Taf

with J = [0,r] x [0,r] x -+ x [0,r] € RN; 0<r < 1;r fixed and/ = [0, 1]. For
tel, =[t,_1,t,] define

Tof(t) = Fo (LX), f o LyY0) = o f o LX) + g% o LY(0). (26)

0

The superscript, represents the dependence regarding the vertical scale factor.
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Proposition 2. Let f € F, the following inequality holds

ITaf — Taflloo <l = Bloo (Il flloo + Do)

la — Bloo = N maxN{|ocn p,1} and Dg defined in the Propositiofh.

\n\
Proof. Let f € F, for each value € I,
[T f (@) — Taf ()]
1 Ol 1oy 1, Ba -1
=lonfolL, (t)+q," oL, (t) = B,f oL, (t)—qy" oL, (?)
<o f o Ly X0) = Buf o Ly YO + g2 o L 1) — gl o L 10,
The first term verifies the inequality
|t f 0 Ly (1) = B f o L, O < otn — Byl 1f 0 Ly (0| < ]t = Blow [| flloo- (27)
To bound the second term, the mean-value theorem is applied. There&xists(0, r)
such that
- - Oqn -
00 D) = 4 (B ) = 52(E0. D)0 = )
Oy
and therefore,
g2 o Ly X6) — gl o LY ()| < Do | — Bloo. (28)

The result is obtained from inequalities (27)—(28).]

Proposition 3. Let f., f3 be Hermite fractal interpolation functions with vertical scale
vectorsa and 8. The following inequality holds:

la = Bloo (I fglloo + Do).

1
— g—
”fa fﬁ”oo 1_|a|oo

Proof. By definition f, f are fixed points of, and7g, respectively. ThereforE, (fo) =
fa, Ta(f8) = fs. Applying the inequality (6) and the Proposition 2

”fa - fﬁ”oo = ”Tafa - Tcxfﬁ + Tafﬁ - T,@fﬁ”oo
< ”Tafa - Tcxf,@”oo + ||To¢fﬁ - T,@f,@”oo
< oo [ fa = falloo + la = Bloo(ll falloc + Do)-

From here

”fa - fﬁ||oo< 1

1
T jole la — Bloo (Il falloo + Do). O (29)
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Consequence: Setting= 0in (29)

I fa = folloo < letloo (Il folloo + Do)- (30)

1
1-Jalw
As previously explainedfp is a Hermite function that interpolates the data points. From here
on, the case of equidistant nodes will be considerddl,= » = ¢, —t,—1 anda,, = % (12).

Let x(¢) be the original functiony(r) € C"[0, 1] (r >2p + 2), with derivatives up to
the ordem prescribed at the nodes. One can bolirigl| .o applying the Ciarlet et a[4]
theorem. Denoting = CoL; L = [|x@P*2)| o,

Il folleo < Koh?P ™2 + ||x| -

If lxlloc = Lo

1
| fao = folloo < ——— |at|oo (Koh?P 2 4 Lo + Do). (31)
1- || oo

Theorem 5. Interpolation error boundtetx (¢) be a function verifying (1) € C2P12[0, 1]
andL = ||x@P*?| .. Let f,, be theC ? FIF defined in the theore, |a,| < . Then

NP 2 (Lo + Do)
_ p+2 A0 PV p
[lx fa||oo<Np_1|:K0h + Tr h? |,

whereK is the Ciarlet et al. constantko = CoL), Lo = || x|l aNdT = 1y — fo.

Proof.
lx = falle < Ilx = folloo + Il fo — falloo
The first term can be bounded applying the theorem of Ciarlet pt]al.
lx = folloo < Koh™*2. (32)

In the second term the consequence of the Proposition 3 is used (31)

1
Ifo = falloo < T~ ledc (Koh®*2 + Lo + Do). (33)
- o0
From (32)—(33)
1 2p+2
e = faloo S i [Koh™ 2 +le(Lo+ Do) .
- oo

By hypothesigalo < §7 = 47 and, therefores—&;— < 3=, so the inequality above

is transformed in

NP (Lo + Do)
e = fallooS 55— |:Koh2p+2 . O (34)
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Following the theorem of Barnsley and Harrington, the derivatifée of f are FIF
corresponding to the IF§L, (¢), Fu(z, x))},’:’:1 (k=0,1,..., p)with

Fu(t,x) = N¥o,x + qu,(lk)(t).

Consequently, the former results can be generalized pghtderivative off.

Proposition 4. Let £, fg‘) be thekth derivatives0< k < p) of £, and £, respectively.
Then

N¥a — Bl )
- D
1- Mol (1fg " lloo + Di)

with Dy defined in Propositiod ((21),(22)).

k
1L = £87llo0 <

Proof. Analogous to Proposition 3.[]

Theorem 6. Derivatives interpolation error boundketx (¢) be a function verifying (r) €
C2r+2[0,1]1andL = || xP*2) | . Let f, theC ? FIF defined by the IFE10) of Theorens
withh = t, — t,_1Vn = 1,2, ..., N. Lets = s(N) such thal0 < s < 1and|at|eo < 375
then

NPts—k (Lk + Dy)
ky _ £k 2p+2—k k k) pts—k
159 — oo < o [Kkh + }

for 0<k < p, being K; the constant of the Ciarlet et al. theoretRy = CyL), Ly =
Ix® oo, T = tn — 1o, Di defined by21)and(22).

Proof. By hypothesi§a|s, < w7. Sincex7= — 55 asx — 0T, there exists = s(N)

suchthat O< s < 1 and|a|ee < N% The rest is analogous to the Theorem &1

Consequence: Clearly, Theorem 6 implies that for sequesges: {0 = té’") < t{’”)
<. < t,(\}:'n) =1},m =0,1,2, ... of partitions withh,, — 0, if the partial derivatives of
the polynomials are uniformly bounded, the corresponding fractal interpolation functions

converge toc(¢) in theC?~1 norm onl = [0, 1].

4. Conclusions

The present paper proposes a method of fractal differentiable interpolation for the approx-
imation of functions and the numerical processing of experimental signals. The theorem of
Barnsley and Harrington provides the construction of a generalization of the Hermite func-
tions space. With the help of some results concerning osculatory polynomials, interpolation
error estimates have been obtained, assuming some hypotheses on the original function.
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As a consequence, the uniform convergence of Hermite fractal functions to the original
function and its first derivatives when the partition diameter tends to zero is deduced.
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